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B U R N - O U T  O F  A L I Q U I D  U N D E R  C O N D I T I O N S  O F  

N A T U R A L  C O N V E C T I O N  

Yu. B. Zudin UDC 536.423.1 

A relation for the critical heat flux density in liquid boiling under conditions of natural convection is derived 
by means of a previously obtained approximate analytical solution of the problem of the hydrodynamics of 
an evaporating meniscus. 

The classical Kutateladze relation for the critical heat flux density under conditions of natural convection 

has the form [1, 2 ] 

q. = O.14rp~/2 (flap) 1/4. (1) 

As is known [3 ], formula (1) becomes inapplicable for the range of low reduced pressures. In [3 ] a model 

of burn-out is developed based on an analysis of the process of evaporation of menisci of a liquid film that lie on 

boundaries of dry spots under vapor bubbles on the heating surface (Fig. 1). The appearance of burn-out is 

associated with an increase in the size of the dry spots existing on the heating surface in nucleate boiling. 

Using the method of physical estimates of the system of equations describing the hydrodynamics of a 

meniscus [4-6 ], the author of [3] obtained relations for the critical heat flux density in the limiting cases of low 

and high pressures. The resultant interpolation relation constructed in [3] generalizes a large quantity of 

experimental data on critical heat flux densities in liquid boiling under conditions of natural convection. 

In [7, 8 ] an approximate analytical solution of the system of differential equations [4, 6 ] describing a flow 

in an evaporating meniscus is obtained. The correctness of the solution [7, 8 ] is confirmed by comparing it with a 

numerical calculation for the case of evaporation of the menicus of liquid ammonia at atmospheric pressure within 

the range of temperature drops AT = 1-100 K. We note that an analysis of the hydrodynamics of an evaporating 

meniscus on the boundary of a dry spot was used in [10] in determining the surface density of boiling centers. 

In the present paper an attempt was made to take the next step in the development of the approach of [3 ]: 

to pass from the method of physical estimates in the analysis of burn-out to direct use of the results of solution of 

the problem of an evaporating meniscus. For this purpose we use the relations of [7, 8 ] for the density of the heat 

flux transferred through the meniscus 

qm = 1.6 -~m In 0.65 (2) 

and for the connection between the geometric dimensions of the meniscus (Fig. 1) 

~m (akATv) 1/4 
l m -  2.1 ~ d~r ) ' (3) 

where ak is the kinetic coefficient of heat transfer [11 ]: 

a k = 0.9Pv r3/2/Ts. (4) 
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Fig. 1. Schematic diagram of an evaporating meniscus at the boundary  with a 

d ry  spot under  vapor formation on the heating surface in nucleate boiling. 

As is known [12, 13], the characteristic size of a vapor bubble on a solid surface as a function of the 

pressure is de termined by ei ther the "inertial scale" 

")tAT" 2/3 1 

or the capillary constant  

(5) 

LZ = f12 r (-~) " (6) 

According to [3 ], a determining role in heat t ransfer  in the precritical region of boiling is played by powerful 

heat sinks si tuated at the boundaries of d ry  spots under  vapor formations (Fig. 1). Quantitatively this effect can 

be taken into account by the interpolation formula 

1 _--1---1 + 1 (7) 

4' L?, 
where the power nl is a free numerical constant.  

It follows from (7) that the length of the meniscus "is tuned" to the lesser of the two possible characterist ic 

sizes of the vapor bubble: lm --" Lt when L1 << L2 (the region of high pressures);  lm --" L2 when/-,2 << L1 (the region 

of low pressures) .  In accordance with (2), (3) this means that in the calculation of heat  t ransfer  the most intense 

heat sinks si tuated at the boundaries of the smallest vapor bubbles are  taken into account.  

We present  the dependence qm(AT) approximately in the form of a power function qm ~ATn2. Replacing 

the logarithmic function in (2) by a constant ,  we obtain using (3), (7): n 2 = 1/12 for l m = LI; n 2 = 3 /4  for I m = 

L2. 
T h e  dependence  q(AT) for nucleate boiling is expressed by the known law I14, 15 ] 

q = 10-3 22AT 3 (8) 
VaTs �9 

A comparison of the dependences qm(AT) and q(AT) gives the following clear physical picture of burn-out .  

Far  from burn-out  the process of boiling will be stable due to the fact that the "transmitt ing capacity" of the meniscus 

with respect to the heat flux is much larger than the mean value over the surface (qm >> q)- However,  with an  

increase in the tempera ture  drop the value of q will increase much more rapidly than qm, and eventual ly the 

dependences q(AT) and qm(AT) will intersect (Fig. 2). A hypothetical  fur ther  increase in AT will lead to disruption 

of the stat ionari ty of heat removal through the meniscus - its "additional feeding" with liquid from the side of the 
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Fig. 2. Dependence of the mean heat flux density over the boiling surface (1) 

and that removed through the meniscus (2) on the temperature drop. 

thick film will be insufficient for compensation of the flow of liquid evaporating from the upper boundary of the 

meniscus (see Fig. 1). Thus, there should exist some boundary value of the temperature drop AT. that cannot be 

exceeded under conditions of stable nucleate boiling (Fig. 2). This is the temperature drop to which the critical 

heat flux density will correspond: 

q = qm = q." (9) 

It also follows from the physical model considered that at AT = AT., q = q, a nonstationary "subcritical 

stage" of nucleate boiling where the dry spot under the bubble begins to increase due to motion of the liquid 

meniscus toward the thick film is realized (Fig. 1). This allows one to determine the characteristic times of surface 

drying with onset of burn-out, which were studied experimentally in [16 ]. 
Substitution of (2), (8) in the condition of burn-out (9) allows, in principle, determination of the value of 

AT., and from it the sought value of q.. The very cumbersome expressions obtained here make it impossible, 

however, to obtain simple power dependences of the critical heat flux density on the physical parameters, thus 

impeeding a comparison of results of calculation by the present model with known results [ 1-3 ]. 
Therefore, we consider the limiting cases of "high" and "low" pressures, when the logarithmic function in 

expression (2) for the density of the heat flux transferred through the meniscus can be replaced approximately by 

power dependences of the form A I/n3, where A = 0.65ak~m/;t. Here we use the approximate thermodynamic relation 

cpTs -~ r [17]. 
a) In the region of high pressures (Ira = LI; A = 104-106; n3 ---- 7) 

q*l = kl pr-2/13 r23/26 pv7/13 /92/13 (c~ff)4/13 . (I0) 

b) In the region of low pressures (lm = K2; A = 101-103; n3 = 3) 

q*2 ~" k2 Pr-2/13r19/26 pv3/13 p8/13 o2/13 ~6/13g v4/13 (11) 

It follows from (10), (11) that the values of q. obtained for the two limiting cases are related to each other as 

q.2 /q , l  ~. 
r PvCr ) 

2/13 
(12) 

We compare the obtained relations with the results of [1-3] by introducing the "relative" critical heat flux 

density g, - the value of q. determined by relations (10), (11) of the present paper is inserted into the numerator, 

and the corresponding "reference" value of q. from [1-3 ] is inserted into the denominator. 
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a) In the region of high pressures (g, = g'l), the reference relation is the formula [1, 2 ] 

1/26 ~ - )3 /52  
Pv (or ( 13 )  

I~'1 = 5 /52  3 /26  
p r 

Here, due to the very low powers of all the parameters entering (13) it is evident that formula (10) virtually 

coincides with classical relation (1). This makes it possible to determine the free numerical constant kl = 2.4. 

b) In the region of low pressures (~ = ~2), the reference relation is the formula [3 ] 

1/455 93/910 254/455 - -54/455 309/455 
Pv r p g v (14) 

~02 = P r  153/910 a51 /91  

Here the powers of the vapor density and the heat of phase conversion virtually coincide. This indicates 

that formula (11) correctly reflects the characteristics of low pressures. However, the difference in the powers of 

the kinematic viscosity, surface tension, and Prandtl number is not small. This makes it impossible to determine 

the free numerical constant k 2. Thus, the applicability of the present model to the region of very low pressures is 

limited. 

We note that the resultant interpolation relation [3 ] has the following structure: 

n4 n4 n4 (15) 
q* = q*l + q*2" 

Here q.l, q.2 are the corresponding limiting values for high and low pressures, each of which involves a free 

numerical constant; n 4 - 5/2 is the power selected from a comparison with a large quantity of experimental data. 

The present approach contains, in principle, three free numerical constants ill, f12, and nl in formulas (5)-(7). We 

note that the constants kl, k2 in formulas (10), (11) that appear after power approximation of the logarithmic 

function in (2) are unique functions of the "primary constants" ill, fl2- 
Since the correctness of relation (10) is confirmed by its good agreement with the Kutateladze formula (1), 

this makes it possible to evaluate the rate of surface drying with onset of burn-out for the region of high pressures 

by means of the heat balance of the evaporating meniscus 

q*l lm (16) 
//Ill -- - -  rp~m' 

and relations (3), (10). 

N O T A T I O N  

Pv, vapor density; p, liquid density; v, kinematic viscosity of the liquid; 2, thermal conductivity of the liquid; 

Cp, specific heat of the liquid; r, heat of phase conversion; a, coefficient of surface tension; 6m, lm, thickness and 

length of the meniscus; AT, temperature drop; q, heat flux density; q,, critical heat flux density; q.l ,  q.2, the same 

for the regions of high and low pressures; T s, saturation temperature; g, free-fall acceleration; "~= g(p - pv) /p;  Pr, 
Prandtl number for the liquid; L1, L2, characteristic dimensions of the vapor bubble for the regions of high and 

low pressures; ~, relative critical heat flux density; urn, rate of surface drying; ill,/32, kl, k2, numerical constants; 

r t l ,  /'/2, /'/3, /'/4, p o w e r s .  
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